题目内容

如图,菱形ABCD中,∠B=60°,AB=2cm,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为


  1. A.
    2数学公式cm
  2. B.
    3数学公式cm
  3. C.
    4数学公式cm
  4. D.
    3cm
B
分析:首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等腰三角形三线合一的定理又可推出△AEF是等边三角形.根据勾股定理可求出AE的长继而求出周长.
解答:解:∵四边形ABCD是菱形,
∴AB=AD=BC=CD,∠B=∠D,
∵E、F分别是BC、CD的中点,
∴BE=DF,
在△ABE和△ADF中,

∴△ABE≌△ADF(SAS),
∴AE=AF,∠BAE=∠DAF.
连接AC,
∵∠B=∠D=60°,
∴△ABC与△ACD是等边三角形,
∴AE⊥BC,AF⊥CD(等腰三角形底边上的中线与底边上的高线重合),
∴∠BAE=∠DAF=30°,
∴∠EAF=60°,
∴△AEF是等边三角形.
∴AE=cm,
∴周长是3cm.
故选B.
点评:此题考查的知识点:菱形的性质、等边三角形的判定和三角形中位线定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网