题目内容


济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.

(1)求乙工程队单独完成这项工作需要多少天?

(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?


【考点】分式方程的应用;一元一次不等式组的应用.

【专题】工程问题.

【分析】(1)设乙工程队单独完成这项工作需要a天,由题意列出分式方程,求出a的值即可;

(2)首先根据题意列出x和y的关系式,进而求出x的取值范围,结合x和y都是正整数,即可求出x和y的值.

【解答】解:(1)设乙工程队单独完成这项工作需要a天,由题意得

+36()=1,

解之得a=80,

经检验a=80是原方程的解.

答:乙工程队单独做需要80天完成;

(2)∵甲队做其中一部分用了x天,乙队做另一部分用了y天,

=1

即y=80﹣x,

又∵x<46,y<52,

解得42<x<46,

∵x、y均为正整数,

∴x=45,y=50,

答:甲队做了45天,乙队做了50天.

【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网