ÌâÄ¿ÄÚÈÝ
6£®£¨1£©ÇóÖ±ÏßACµÄº¯Êý½âÎöʽ£»
£¨2£©PÊÇÏß¶ÎACÉϵÄÒ»¸ö¶¯µã£¬¹ýP×÷yÖáµÄƽÐÐ˼°²½»Å×ÎïÏßÓÚµãE£¬Çó¡÷ACEÃæ»ýµÄ×î´óÖµ£»
£¨3£©µãGÊÇÅ×ÎïÏßÉϵ͝µã£¬ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãF£¬Ê¹A£¬C£¬F£¬GΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³öËùÓÐÂú×ãÌõ¼þµÄFµã×ø±ê£»·ñÔò£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©ÒòΪÅ×ÎïÏßÓëxÖáÏཻ£¬ËùÒÔ¿ÉÁîy=0£¬½â³öA¡¢BµÄ×ø±ê£®ÔÙ¸ù¾ÝCµãÔÚÅ×ÎïÏßÉÏ£¬CµãµÄºá×ø±êΪ2£¬´úÈëÅ×ÎïÏßÖм´¿ÉµÃ³öCµãµÄ×ø±ê£®ÔÙ¸ù¾ÝÁ½µãʽ·½³Ì¼´¿É½â³öACµÄº¯Êý±í´ïʽ£»
£¨2£©¸ù¾ÝPµãÔÚACÉÏ¿ÉÉè³öPµãµÄ×ø±ê£®Eµã×ø±ê¿É¸ù¾ÝÒÑÖªµÄÅ×ÎïÏßÇóµÃ£®ÒòΪPE¶¼ÔÚ´¹Ö±ÓÚxÖáµÄÖ±ÏßÉÏ£¬ËùÒÔÁ½µãÖ®¼äµÄ¾àÀëΪ|xA-xC|Áгö·½³Ìºó½áºÏ¶þ´Îº¯ÊýµÄÐÔÖʼ´¿ÉµÃ³ö´ð°¸£»
£¨3£©´æÔÚËĸöÕâÑùµÄµã£®
¢ÙÁ¬½ÓCÓëÅ×ÎïÏߺÍyÖáµÄ½»µã£¬ÄÇôCG¡ÎxÖᣬ´ËʱAF=CG=2£¬Òò´ËFµãµÄ×ø±êÊÇ£¨-3£¬0£©£»
¢ÚAF=CG=2£¬AµãµÄ×ø±êΪ£¨-1£¬0£©£¬Òò´ËFµãµÄ×ø±êΪ£¨1£¬0£©£»
¢Û´ËʱC£¬GÁ½µãµÄ×Ý×ø±ê¹ØÓÚxÖá¶Ô³Æ£¬Òò´ËGµãµÄ×Ý×ø±êΪ3£¬´úÈëÅ×ÎïÏßÖм´¿ÉµÃ³öGµãµÄ×ø±êΪ£¨1+$\sqrt{7}$£¬3£©£¬ÓÉÓÚÖ±ÏßGF¡ÎACµÄÏàͬ£¬Òò´Ë¿ÉÉèÖ±ÏßGFµÄ½âÎöʽΪy=-x+h£¬½«Gµã´úÈëºó¿ÉµÃ³öÖ±ÏߵĽâÎöʽΪy=-x+7£®Òò´ËÖ±ÏßGFÓëxÖáµÄ½»µãFµÄ×ø±êΪ£¨4+$\sqrt{7}$£¬0£©£»¢Üͬ¢Û¿ÉÇó³öFµÄ×ø±êΪ£¨4-$\sqrt{7}$£¬0£©£»
×ÛºÏËÄÖÖÇé¿ö¿ÉµÃ³ö£¬´æÔÚ4¸ö·ûºÏÌõ¼þµÄFµã£®
½â´ð ½â£¨1£©µ±y=0ʱ£¬½âµÃx1=-1»òx2=3£¬
¡àA£¨-1£¬0£©B£¨3£¬0£©£®
½«CµãµÄºá×ø±êx=2´úÈëy=x2-2x-3µÃy=-3£¬
¡àC£¨2£¬-3£©£®
ÉèÖ±ÏßACµÄ½âÎöʽΪy=kx+b£¬½«µãAºÍµãCµÄ×ø±ê´úÈëµÃ£º
$\left\{\begin{array}{l}{-k+b=0}\\{2k+b=-3}\end{array}\right.$£¬
½âµÃ£ºk=-1£¬b=-1£®
¡àÖ±ÏßACµÄº¯Êý½âÎöʽÊÇy=-x-1£®
£¨2£©ÉèPµãµÄºá×ø±êΪx£¨-1¡Üx¡Ü2£©£¬
ÔòP¡¢EµÄ×ø±ê·Ö±ðΪP£¨x£¬-x-1£©£¬E£¨x£¬x2-2x-3£©£¬
¡ßPµãÔÚEµãµÄÉÏ·½£¬PE=£¨-x-1£©-£¨x2-2x-3£©=-x2+x+2£¬
¡àS¡÷ACE=$\frac{1}{2}$PE¡Á|xA-xC|=$\frac{1}{2}$£¨-x2+x+2£©¡Á3=-$\frac{3}{2}$x2+$\frac{3}{2}$x+3£¬
¡àS¡÷ACE=-$\frac{3}{2}$£¨x-$\frac{1}{2}$£©2+$\frac{27}{8}$
µ±x=$\frac{1}{2}$ʱ£¬S¡÷ACE×î´óΪ$\frac{27}{8}$£®
£¨3£©´æÔÚ4¸öÕâÑùµÄµãF£¬·Ö±ðÊÇF1£¨1£¬0£©£¬F2£¨-3£¬0£©£¬F3£¨4+$\sqrt{7}$£¬0£©£¬F4£¨4-$\sqrt{7}$£¬0£©£®
¢ÙÈçͼ1£¬Á¬½ÓCÓëÅ×ÎïÏߺÍyÖáµÄ½»µã£¬![]()
¡ßC£¨2£¬-3£©£¬G£¨0£¬-3£©
¡àCG¡ÎxÖᣬ´ËʱAF=CG=2£¬
¡àFµãµÄ×ø±êÊÇ£¨-3£¬0£©£»
¢ÚÈçͼ2£¬AF=CG=2£¬AµãµÄ×ø±êΪ£¨-1£¬0£©£¬Òò´ËFµãµÄ×ø±êΪ£¨1£¬0£©£»![]()
¢ÛÈçͼ3£¬´ËʱC£¬GÁ½µãµÄ×Ý×ø±ê¹ØÓÚxÖá¶Ô³Æ£¬Òò´ËGµãµÄ×Ý×ø±êΪ3£¬´úÈëÅ×ÎïÏßÖм´¿ÉµÃ³öGµãµÄ×ø±êΪ£¨1¡À$\sqrt{7}$£¬3£©£¬ÓÉÓÚÖ±ÏßGF¡ÎAC£¬Òò´Ë¿ÉÉèÖ±ÏßGFµÄ½âÎöʽΪy=-x+h£¬½«Gµã´úÈëºó¿ÉµÃ³öÖ±ÏߵĽâÎöʽΪy=-x+4+$\sqrt{7}$£®Òò´ËÖ±ÏßGFÓëxÖáµÄ½»µãFµÄ×ø±êΪ£¨4+$\sqrt{7}$£¬0£©£»![]()
¢ÜÈçͼ4£¬Í¬¢Û¿ÉÇó³öFµÄ×ø±êΪ£¨4-$\sqrt{7}$£¬0£©£»![]()
×ÛºÏËÄÖÖÇé¿ö¿ÉµÃ³ö£¬´æÔÚ4¸ö·ûºÏÌõ¼þµÄFµã£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌâ£¬Éæ¼°µ½ÁË´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ¡¢Æ½ÐÐËıßÐεÄÅж¨¡¢¶þ´Îº¯ÊýµÄÐÔÖʵÈÖØÒªÖªÊ¶µã£¬×ÛºÏÐÔÇ¿£¬½â´ð±¾ÌâµÄ¹Ø¼üÊÇÒªÇóѧÉúÕÆÎÕ·ÖÀàÌÖÂÛ£¬ÊýÐνáºÏµÄÊýѧ˼Ïë·½·¨£¬´ËÌâÓÐÒ»¶¨µÄÄѶȣ®
| A£® | $\sqrt{2}$ | B£® | $\sqrt{5}$ | C£® | ¦Ð | D£® | -1.5 |
| A£® | |x| | B£® | $\frac{1}{|x|}$ | C£® | -|x| | D£® | -$\frac{1}{|x|}$ |