题目内容
7.已知点A在函数y1=-$\frac{1}{x}$(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为( )| A. | 有1对或2对 | B. | 只有1对 | C. | 只有2对 | D. | 有2对或3对 |
分析 根据“友好点”的定义知,函数y1图象上点A(a,-$\frac{1}{a}$)关于原点的对称点B(-a,$\frac{1}{a}$)一定位于直线y2上,即方程ka2-(k+1)a+1=0 有解,整理方程得(a-1)(ka-1)=0,据此可得答案.
解答 解:设A(a,-$\frac{1}{a}$),
由题意知,点A关于原点的对称点B(-a,$\frac{1}{a}$)在直线y2=kx+1+k上,
则$\frac{1}{a}$=-ak+1+k,
整理,得:ka2-(k+1)a+1=0 ①,
即(a-1)(ka-1)=0,
∴a-1=0或ka-1=0,
则a=1或ka-1=0,
若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;
若k≠0,则a=1或a=$\frac{1}{k}$,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,
综上,这两个函数图象上的“友好点”对数情况为1对或2对,
故选:A.
点评 本题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将“友好点”的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键.
练习册系列答案
相关题目
3.
如图,矩形OABC的顶点A、C坐标分别是(8,0),(0,4),反比例函数y=$\frac{k}{x}$(x>0)的图象过对角线的交点P并且与AB、BC分别交于D、E两点,连接OD、OE、DE,则△ODE的面积为( )
| A. | 14 | B. | 12 | C. | 15 | D. | 8 |
4.若数据10,9,a,12,9的平均数是10,则这组数据的方差是( )
| A. | 1 | B. | 1.2 | C. | 0.9 | D. | 1.4 |
12.
某中学初三年级的同学参加了一项节能的社会调查活动,为了了解家庭用电的情况,他们随即调查了某地50个家庭一年中生活用电的电费支出情况,并绘制了如下不完整的频数分布表和频数分布直方图(费用取整数,单位:元).
请你根据以上提供的信息,解答下列问题:
(1)补全频数分布表a=10,b=0.100,和频数分布直方图;
(2)这50个家庭电费支出的中位数落在哪个组内?
(3)若该地区有3万个家庭,请你估计该地区有多少个一年电费支出低于1400元的家庭?
| 分组/元 | 频 数 | 频 率 |
| 1000<x<1200 | 3 | 0.060 |
| 1200<x<1400 | 12 | 0.240 |
| 1400<x<1600 | 18 | 0.360 |
| 1600<x<1800 | a | 0.200 |
| 1800<x<2000 | 5 | b |
| 2000<x<2200 | 2 | 0.040 |
| 合计 | 50 | 1.000 |
(1)补全频数分布表a=10,b=0.100,和频数分布直方图;
(2)这50个家庭电费支出的中位数落在哪个组内?
(3)若该地区有3万个家庭,请你估计该地区有多少个一年电费支出低于1400元的家庭?