题目内容
【题目】如图,已知在△ABC中,∠A=155°,第一步:在△ABC的上方确定点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB;第二步:在△A1BC的上方确定点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA;…,照此继续,最多能进行_____步.
![]()
【答案】6
【解析】
先根据三角形内角和定理,得到∠ABC+∠ACB=25°,再根据第一步操作,即可得到∠A1BC+∠A1CB=50°,进而得出∠A1的度数;根据三角形内角和为180°,即可得到最多能进行的步数.
∵△ABC中,∠A=155°,
∴∠ABC+∠ACB=25°,
又∵∠A1BA=∠ABC,∠A1CA=∠ACB,
∴∠A1BC+∠A1CB=50°,
∴△A1BC中,∠A1=180°-50°=130°;
∵25°+25°×6=175°<180°,25°+25°×7=200°>180°,
∴最多能进行6步,
故答案为: 6.
【题目】今年年初,我国爆发新冠肺炎疫情,某省邻近县市 C、D 获知 A、B 两市分别急需救援物资 200吨和 300 吨的消息后,决定调运物资支援.已知 C 市有救援物资 240 吨,D 市有救援物资 260 吨,现将这些救援物资全部调往 A、B 两市.已知从 C 市运往 A、B 两市的费用分别为每吨 20 元和 25 元,从D 市运往往 A、B 两市的费用分别为每吨 15 元和 30 元,设从 C 市运往 A 市的救援物资为 x 吨.
(1) 请填写下表;
A | B | 合计(吨) | |
C | x | _____ | 240 |
D | _____ | _____ | 260 |
总计(吨) | 200 | 300 | 500 |
(2)设 C、D 两市的总运费为 W 元,则 W 与 x 之间的函数关系式为_________,其中自变量 x的取值范围是________;
(3)经过抢修,从 C 市到 B 市的路况得到了改善,缩短了运输时间,运费每吨减少 n 元(n>10),其余路线运费不变,若 C、D 两市的总运费的最小值不小于 7920 元,则 n 的取值范围是______________.