题目内容
如图,正方形ABCD的边长为4+2,点E在对角线BD上,且∠BAE=,EF⊥AB,垂足为点F,则EF的长是
如图所示,已知直线l1∥l2,则△ABC和△ABD的面积有什么关系?说明理由.
如图所示,在长方形的台球桌桌面上,选择适当的方法击打白球,可以使白球经过两次反弹后将黑球直接撞入中洞,此时∠1=∠2,∠3=∠4,且∠2+∠3=90°,∠4+∠5=90°.如果黑球与洞口连线和台球桌面边缘的夹角为∠5=40°,那么∠1应等于多少度才能保证黑球进入中洞?
如图所示,直线a,b相交于点O,若∠1=20°,则∠2等于( )
A.30°
B.20°
C.160°
D.150°
在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.
(1)求证:AC⊥ED
(2)求证:△ACD≌△ACE
(3)请猜测CD与DH的数量关系,并证明
如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是--------( )
下列计算正确的是( )
A.
B.
C.
D.
有底面为正方形的直四棱柱容器A和圆柱形容器B,容器材质相同,厚度忽略不计.如果它们的主视图是完全相同的矩形,那么将B容器盛满水,全部倒入A容器,问:结果会 (“溢出”、“刚好”、“未装满”,选一个)
(1)计算:(6.28-2π)0+(-)-2-2cos60°;
(2)解方程:=