题目内容
下列式子中:,,,,,其中属于最简二次根式的有几个( )
A. 1 B. 2 C. 3 D. 4
如图,在长方形纸片中,,点在边上,将沿直线折叠,点恰好落在对角线上的点处.若,则的长是( )
A. B. 6 C. 4 D. 5
如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的( )
A. B. C. D.
先化简,再求值:,其中
如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012=( )
A. 2013 B. 2012 C. D.
如图,在中,,以长为一边作,,取中点,连、、.
求证:
当________时,是等边三角形,并说明理由.
当时,若,取中点,求的长.
如图,在的正方形格纸中,有一个以格点为顶点的,请你找出格纸中所有与成轴对称且以格占为顶点的三角形,这样的三角形共有________个,请在下面所给的格纸中一一画出.(所给的六个格纸未必全用).
如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<5.
(1)设四边形PQCB的面积为S,求S与t的关系式;
(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?
(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由.
《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )
A. B.
C. D.