题目内容

6.如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F,点E是AB的中点,连接EF.
(1)求证:△AEF∽△ABD;
(2)填空:
①若BC=8,AC=5,则EF=1.5;
②若四边形BDFE的面积为6,则△ABD的面积为8.

分析 (1)首先判定△ADC是等腰三角形,然后利用等腰三角形的性质得到点F是AD的中点,然后得到EF是△ABD的中位线,进而可证明△AEF∽△ABD;
(2)①因为EF是△ABD的中位线,所以BD=2EF,求出BD的长即可得到EF的长;②根据(1)证得的平行可以判定△AEF∽ABD,然后利用相似三角形面积的比等于相似比的平方求的△ABD的面积.

解答 17.(1)证明:
∵CF平分∠ACB,
∴∠ACF=∠BCF,
又∵DC=AC,
∴CF是△ACD的中线,
∴点F是AD的中点,
又∵E是AB的中点,
∴EF是△ABD的中位线,
∴EF∥BD,
∴△AEF∽△ABD;
(2)①∵EF是△ABD的中位线,
∴EF=$\frac{1}{2}$BD,
∵BC=8,AC=5,DC=AC,
∴BD=BC-CD=3,
∴EF=1.5,
故答案为1.5;
②∵△AEF∽△ABD,
∴S△AEF:S△ABD=1:4,
∴S△AEF:S四边形BDFE=1:3,
∵四边形BDFE的面积为6,
∴S△AEF=2,
∴S△ABD=S△AEF+S四边形BDFE=2+6=8,
故答案为:8.

点评 本题主要考查等腰三角形的判定和性质、三角形中位线的定义和性质、相似三角形的判定和性质,解题的关键在于求证EF为中位线,S△AEF:S△ABD=1:4.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网