题目内容
如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60°,则它们重叠部分的面积为( )
A. 3 B. 2 C. D.
下列手机屏幕解锁图案中,不是轴对称图形的是( )
A. B. C. D.
如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是( )
如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从点B出发,沿BC以2 cm /s的速度向点C移动,点Q从点C出发,以1cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=________时,△CPQ与△CBA相似.
如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为( )
A. B. C. D. 6
问题探究:
新定义:
将一个平面图形分为面积相等的两部分的直线叫做该平面图形的“等积线”,其“等积线”被该平面图形截得的线段叫做该平面图形的“等积线段”(例如圆的直径就是圆的“等积线段”)
解决问题:
已知在Rt△ABC中,∠BAC=90°,AB=AC=2.
(1)如图1,若AD⊥BC,垂足为D,则AD是△ABC的一条等积线段,直接写出AD的长;
(2)在图2和图3中,分别画出一条等积线段,并直接写出它们的长度. (要求:图1、图2和图3中的等积线段的长度各不相等)
若二次函数y=x2+bx+c的图象经过点(0,1)和(1,-2)两点,求此二次函数的表达式.
D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.
(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;
(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)
在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm.给出下列三个结论:
① 以点C为圆心,2.3cm长为半径的圆与AB相离;
② 以点C为圆心,2.4cm长为半径的圆与AB相切;
③ 以点C为圆心,2.5cm长为半径的圆与AB相交;则上述结论中正确的个数是( )
A.0个 B.1个 C.2个 D.3个