题目内容

已知a=1数学公式,b=数学公式,求a2+ab+b2的值.

解:原式=a2+ab+b2+ab-ab=(a+b)2-ab,
当a=1,b=时,
原式=(a+b)2-ab
=(1-+1+2-(1-)(1+
=4-(1-2)=5.
分析:把a2+ab+b2用配方法变形为a2+ab+b2+ab-ab,利用完全平方公式化简为:(a+b)2-ab,然后把a、b的值代入求值即可.
点评:本题主要考查二次根式的化简,完全平方公式的应用、平方差公式的应用,关键在于熟练运用配方法把原式子进行化简.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网