题目内容
如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是( )
A.17° B.34° C.56° D.68°
(1)求不等式组的整数解;
(2)化简:.
如图,已知D为△ABC边AB上一点,AD=2BD,DE∥BC交AC于E,AE=6,则EC=( )
A、1 B、2 C、3 D、4
若二次函数y=ax2+bx+c(a<0)的对称轴为直线x=-1,图象经过点(1,0),有下列结论:①abc<0;②2a-b=0;③a+b+c>0;④b2>5ac,则以上结论一定正确的个数是 。
在平面直角坐标系中,一次函数y=x的图象、反比例函数y=图象以及二次函数y=x2-6x的对称轴围成一个封闭的平面区域(含边界),从该区域内所有格点(横、纵坐标均为整数的点称为格点)中任取3个,则该3点恰能作为一个三角形的三个顶点的概率是( )
A. B. C. D.
某水果超市以8元/千克的单价购进1000千克的苹果,为提高利润和便于销售,将苹果按大小分两种规格出售,计划大、小号苹果都为500千克,大号苹果单价定为16元/千克,小号苹果单价定为10元/千克,若大号苹果比计划每增加1千克,则大苹果单价减少0.03元,小号苹果比计划每减少1千克,则小苹果单价增加0.02元.设大号苹果比计划增加x千克.
(1)大号苹果的单价为 元/千克;小号苹果的单价为 元/千克;(用含x 的代数式表示)
(2)若水果超市售完购进的1000千克苹果,请解决以下问题:
①当x为何值时,所获利润最大?
②若所获利润为3385元,求x的值.
如图,E、F是四边形ABCD的对角线AC上两点,AE=CF,DF∥BE,DF=BE.
(1)求证:四边形ABCD是平行四边形;
(2)若AC平分∠BAD,求证:ABCD为菱形.
使有意义的x的取值范围是( )
A、x>1 B、x≥1 C、x<1 D、x≤1
已知有一根长为10的铁丝,折成了一个矩形框.则这个矩形相邻两边a,b之间函数的图象大致为( )