题目内容

如图,在锐角三角形ABC中,BC=4,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,试求CM+MN的最小值.

CM+MN的最小值为4. 【解析】试题分析:过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,再根据∠ABC=45°,CE⊥AB,可知△BCE是等腰直角三角形,由锐角三角函数的定义即可求出CE的长. 试题解析: 过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值, ∵B...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网