题目内容
在菱形ABCD和正三角形BGF中,∠ABC=60°,P是DF的中点,连接PG、PC.
(1)如图1,当点G在BC边上时,易证:PG=
PC.(不必证明)
(2)如图2,当点F在AB的延长线上时,线段PC、PG有怎样的数量关系,写出你的猜想,并给与证明;
(3)如图3,当点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,写出你的猜想(不必证明).
![]()
![]()
(1)提示:如图1:延长GP交DC于点E,
利用△PED≌△PGF,得出PE=PG,DE=FG,
∴CE=CG,
∴CP是EG的中垂线,
在RT△CPG中,∠PCG=60°,
∴PG=
PC.
(2)如图2,延长GP交DA于点E,连接EC,GC,
![]()
∵∠ABC=60°,△BGF正三角形
∴GF∥BC∥AD,
∴∠EDP=∠GFP,
在△DPE和△FPG中
![]()
∴△DPE≌△FPG(ASA)
∴PE=PG,DE=FG=BG,
∵∠CDE=CBG=60°,CD=CB,
在△CDE和△CBG中,
![]()
∴△CDE≌△CBG(SAS)
∴CE=CG,∠DCE=∠BCG,
∴∠ECG=∠DCB=120°,
∵PE=PG,
∴CP⊥PG,∠PCG=
∠ECG=60°
∴PG=
PC.
(3)猜想:PG=
PC.
证明:如图3,延长GP到H,使PH=PG,连接CH,CG,DH,作ME∥DC
![]()
∵P是线段DF的中点,
∴FP=DP,
∵∠GPF=∠HPD,
∴△GFP≌△HDP,
∴GF=HD,∠GFP=∠HDP,
∵∠GFP+∠PFE=120°,∠PFE=∠PDC,
∴∠CDH=∠HDP+∠PDC=120°,
∵四边形ABCD是菱形,
∴CD=CB,∠ADC=∠ABC=60°,点A、B、G又在一条直线上,
∴∠GBC=120°,
∵四边形BEFG是菱形,
∴GF=GB,
∴HD=GB,
∴△HDC≌△GBC,
∴CH=CG,∠DCH=∠BCG,
∴∠DCH+∠HCB=∠BCG+∠HCB=120°,
即∠HCG=120°
∵CH=CG,PH=PG,
∴PG⊥PC,∠GCP=∠HCP=60°,
∴PG=
PC.
如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于( )
![]()
|
| A. | 40° | B. | 50° | C. | 70° | D. | 80° |
已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.
(1)求证:△AOD≌△EOC;
(2)连接AC,DE,当∠B=∠AEB= °时,四边形ACED是正方形?请说明理由.
![]()
分式方程
的解是( )
|
| A. | x=﹣2 | B. | x=2 | C. | x=1 | D. | x=1或x=2 |
某小7名初中男生参加引体向上体育测试的成绩分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为( )
|
| A. | 6,7 | B. | 8,7 | C. | 8,6 | D. | 5,7 |
苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需( )
|
| A. | (a+b)元 | B. | (3a+2b)元 | C. | (2a+3b)元 | D. | 5(a+b)元 |