题目内容


在菱形ABCD和正三角形BGF中,∠ABC=60°,P是DF的中点,连接PG、PC.

(1)如图1,当点G在BC边上时,易证:PG=PC.(不必证明)

(2)如图2,当点F在AB的延长线上时,线段PC、PG有怎样的数量关系,写出你的猜想,并给与证明;

(3)如图3,当点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,写出你的猜想(不必证明).


(1)提示:如图1:延长GP交DC于点E,

利用△PED≌△PGF,得出PE=PG,DE=FG,

∴CE=CG,

∴CP是EG的中垂线,

在RT△CPG中,∠PCG=60°,

∴PG=PC.

(2)如图2,延长GP交DA于点E,连接EC,GC,

∵∠ABC=60°,△BGF正三角形

∴GF∥BC∥AD,

∴∠EDP=∠GFP,

在△DPE和△FPG中

∴△DPE≌△FPG(ASA)

∴PE=PG,DE=FG=BG,

∵∠CDE=CBG=60°,CD=CB,

在△CDE和△CBG中,

∴△CDE≌△CBG(SAS)

∴CE=CG,∠DCE=∠BCG,

∴∠ECG=∠DCB=120°,

∵PE=PG,

∴CP⊥PG,∠PCG=∠ECG=60°

∴PG=PC.

(3)猜想:PG=PC.

证明:如图3,延长GP到H,使PH=PG,连接CH,CG,DH,作ME∥DC

∵P是线段DF的中点,

∴FP=DP,

∵∠GPF=∠HPD,

∴△GFP≌△HDP,

∴GF=HD,∠GFP=∠HDP,

∵∠GFP+∠PFE=120°,∠PFE=∠PDC,

∴∠CDH=∠HDP+∠PDC=120°,

∵四边形ABCD是菱形,

∴CD=CB,∠ADC=∠ABC=60°,点A、B、G又在一条直线上,

∴∠GBC=120°,

∵四边形BEFG是菱形,

∴GF=GB,

∴HD=GB,

∴△HDC≌△GBC,

∴CH=CG,∠DCH=∠BCG,

∴∠DCH+∠HCB=∠BCG+∠HCB=120°,

即∠HCG=120°

∵CH=CG,PH=PG,

∴PG⊥PC,∠GCP=∠HCP=60°,

∴PG=PC.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网