题目内容
某几何体的三视图如图,则该几何体是( )
A. 三棱柱 B. 长方体 C. 圆柱 D. 圆锥
如图,在△ABC中,两条中线BE,CD相交于点O,则S△DOE∶S△DCE=( )
A. 1∶4 B. 1∶3 C. 1∶2 D. 2∶3
若m、n是一元二次方程x2﹣5x﹣2=0的两个实数根,则m+n﹣mn=___________.
甲是某零件的直观图,则它的主视图为( )
A. B. C. D.
如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是( )
下列立体图形中,俯视图是正方形的是( )
如图所示,一根长2a的木棍,斜靠在与地面垂直的墙上,设木棍的中点为若木棍A端沿墙下滑,且B端沿地面向右滑行.
请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.
在木棍滑动的过程中,当滑动到什么位置时,的面积最大?简述理由,并求出面积的最大值.
某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.
(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?
(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?
写出一个反比例函数y= (k≠0),使它的图象在每个象限内,y的值随x值的增大而减小,这个函数的解析式为____________.