题目内容

某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.

(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?

(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?

练习册系列答案
相关题目

如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,-2).

(1)求△AHO的周长;

(2)求该反比例函数和一次函数的解析式.

【答案】(1)△AHO的周长为12;(2) 反比例函数的解析式为y=,一次函数的解析式为y=-x+1.

【解析】试题分析: (1)根据正切函数,可得AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案;

(2)根据待定系数法,可得函数解析式.

试题解析:(1)由OH=3,tan∠AOH=,得

AH=4.即A(-4,3).

由勾股定理,得

AO==5,

△AHO的周长=AO+AH+OH=3+4+5=12;

(2)将A点坐标代入y=(k≠0),得

k=-4×3=-12,

反比例函数的解析式为y=

当y=-2时,-2=,解得x=6,即B(6,-2).

将A、B点坐标代入y=ax+b,得

解得

一次函数的解析式为y=-x+1.

考点:反比例函数与一次函数的交点问题.

【题型】解答题
【结束】
23

如图,点A,B,C表示某旅游景区三个缆车站的位置,线段AB,BC表示连接缆车站的钢缆,已知A,B,C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米,310米,710米,钢缆AB的坡度i1=1∶2,钢缆BC的坡度i2=1∶1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网