题目内容
【题目】已知,如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在边BC上以每秒1个单位长的速度由点C向点B运动.
(1)当t为何值时,四边形PODB是平行四边形?
(2)△OPD为等腰三角形时,写出点P的坐标(请直接写出答案,不必写过程).
![]()
【答案】(1)t=5(2)(2,4)(2.5,4)(3,4)(8,4)
【解析】
(1)根据平行四边形的性质就可以知道PB=5,可以求出PC=5,从而可以求出t的值;
(2)当P1O=OD=5或P2O=P2D或P3D=OD=5或P4D=OD=5时分别作P2E⊥OA于E,DF⊥BC于F,P4G⊥OA于G,利用勾股定理得到P1C,OE,P3F,DG的值,就可以求出P的坐标.
由题意可知OD =5,PC=t,
(1)∵四边形PODB是平行四边形,
∴PB=OD=5,
∴PC=5,
∴t=5;
(2)当P1O=OD=5时,由勾股定理可以求得P1C=3,
P2O=P2D时,作P2E⊥OA,
∴OE=ED=2.5;
当P3D=OD=5时,作DF⊥BC,由勾股定理,得P3F=3,
∴P3C=2;
当P4D=OD=5时,作P4G⊥OA,由勾股定理,得
DG=3,
∴OG=8,
∴P1(2,4),P2(2.5,4),P3(3,4),P4(8,4).
![]()
【题目】某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.
经过调查,得到如下数据:
销售单价x(元/件) | … | 20 | 30 | 40 | 50 | 60 | … |
每天销售量y(件) | … | 500 | 400 | 300 | 200 | 100 | … |
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系式,并求出函数关系式.
(2)物价部门规定,该工艺品的销售单价最高不超过45元/件,当销售单价x定为多少时,工艺厂试销该工艺品每天获得的利润8000元?(利润=销售总价﹣成本总价)
(3)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)
![]()