题目内容
如图所示,以等边三角形ABC的边BC为直径作⊙O交AB于D,交AC于E,判断
【答案】分析:连接OD,OE,由∠B=∠C=60°,易证△BOD与△COE都是等边三角形,可得∠DOE=∠BOD=∠COE=60°,由圆周角定理知,
.
解答:
解:相等.
如右图所示,连接OD,OE,
∵OB=OD=OE=OC,∠B=∠C=60°
∴△BOD与△COE都是等边三角形
∴∠BOD=∠COE=60°
∠DOE=180°-∠BOD-∠COE=60°
∴∠DOE=∠BOD=∠COE
∴
.
点评:本题利用了等边三角形的性质和判定及圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
解答:
如右图所示,连接OD,OE,
∵OB=OD=OE=OC,∠B=∠C=60°
∴△BOD与△COE都是等边三角形
∴∠BOD=∠COE=60°
∠DOE=180°-∠BOD-∠COE=60°
∴∠DOE=∠BOD=∠COE
∴
点评:本题利用了等边三角形的性质和判定及圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
练习册系列答案
相关题目