题目内容
已知对任意正整数n都有a1+a2+a3+…+an=n3,则
+
+
+…+
=______.
| 1 |
| a2-1 |
| 1 |
| a3-1 |
| 1 |
| a4-1 |
| 1 |
| a2011-1 |
∵a1+a2+a3+…+an=n3,
∴a1=1,a1+a2=8,a1+a2+a3=27,a1+a2+a3+a4=64,a1+a2+a3+a4+a5=125,
∴a2=7,a3=19,a4=37,a5=61,an=3n(n-1)+1,
∴a2011=3×2010×2011+1,
∴
+
+
+…+
=
+
+
+
+…+
,
=
(
+
+
+
+…+
),
=
(1-
+
-
+
-
+
-
+…+
-
),
=
(1-
),
=
.
故答案为:
.
∴a1=1,a1+a2=8,a1+a2+a3=27,a1+a2+a3+a4=64,a1+a2+a3+a4+a5=125,
∴a2=7,a3=19,a4=37,a5=61,an=3n(n-1)+1,
∴a2011=3×2010×2011+1,
∴
| 1 |
| a2-1 |
| 1 |
| a3-1 |
| 1 |
| a4-1 |
| 1 |
| a2011-1 |
| 1 |
| 6 |
| 1 |
| 18 |
| 1 |
| 36 |
| 1 |
| 60 |
| 1 |
| 3×2010×2011 |
=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| 20 |
| 1 |
| 2010×2011 |
=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2010 |
| 1 |
| 2011 |
=
| 1 |
| 3 |
| 1 |
| 2011 |
=
| 670 |
| 2011 |
故答案为:
| 670 |
| 2011 |
练习册系列答案
相关题目