题目内容

7.如图所示,二次函数 y=ax2+bx+c (a≠0)的图象经过点(-1,2),且与x轴交点的横坐标分别为x1,x2,其中-2<x1<-1,0<x2<1,下列结论(1)4a-2b+c<0;(2)2a-b<0;(3)a-3b>0;(4)b2+8a<4ac; 其中正确的有(1),(2),(3).

分析 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.

解答 解:(1)根据图象知,当x=-2时,y<0,即4a-2b+c<0;故本选项正确;

(2)∵该函数图象的开口向下,∴a<0;
又对称轴-1<x=-$\frac{b}{2a}$<0,∴2a-b<0,故本选项正确;

(3)∵a<0,-$\frac{b}{2a}$<0,
∴b<0,
∵二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2),
∴a-b+c=2,
∵0<c<2,
∴a-b=2-c>0,
则a-3b>0.
故本选项正确;

(4)∵y=$\frac{4ac-{b}^{2}}{4a}$>2,a<0,
∴4ac-b2<8a,即b2+8a>4ac,故本选项错误.
综上所述,正确的结论有3个;
故答案为:(1),(2),(3).

点评 本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握.二次函数y=ax2+bx+c系数符号的确定由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网