题目内容

6.如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM、CN、MN.若AB=3$\sqrt{2}$,BC=2$\sqrt{3}$,则图中阴影部分的面积为3$\sqrt{6}$.

分析 根据矩形的中心对称性判定阴影部分的面积等于空白部分的面积,从而得到阴影部分的面积等于矩形的面积的一半,再根据矩形的面积公式即可得解.

解答 解:∵点E、F分别是AB、CD的中点,M、N分别为DE、BF的中点,
∴矩形绕中心旋转180°阴影部分恰好能够与空白部分重合,
∴阴影部分的面积等于空白部分的面积,
∴阴影部分的面积=$\frac{1}{2}$矩形的面积=$\frac{1}{2}$AB•BC=$\frac{1}{2}$×3$\sqrt{2}$×2$\sqrt{3}$=3$\sqrt{6}$;
故答案为:3$\sqrt{6}$.

点评 本题考查了矩形的性质,主要利用了矩形的中心对称性,判断出阴影部分的面积等于矩形的面积的一半是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网