ÌâÄ¿ÄÚÈÝ
10£®Èçͼ1£¬ABCDÊÇÒ»ÕžØÐÎֽƬ£¬AD=BC=1£¬AB=CD=5£®ÔÚ¾ØÐÎABCDµÄ±ßABÉÏȡһµãM£¬ÔÚCDÉÏȡһµãN£¬½«Ö½Æ¬ÑØMNÕÛµþ£¬Ê¹MBÓëDN½»ÓÚµãK£¬µÃµ½¡÷MNK£¬KB½»MNÓÚO£®£¨1£©¢ÙÈô¡Ï1=80¡ã£¬Çó¡ÏMKN=20¡ã£»
¢Ú²»Í¬µÄÕÛµþµÃµ½²»Í¬µÄ¡÷MNK£¬¡÷MNKµÄÃæ»ýµÄ×î´óֵΪ$\frac{13}{10}$£®
£¨2£©½«Ö½Æ¬°´Èçͼ2ËùʾµÄ·½·¨ÔÙÑØKPÕÛµþ£¬Ê¹µãMÔÚÏß¶ÎKDÉÏ£¬Á½´ÎÕÛµþ²¿·ÖÓëÔ¾ØÐεÄÖØºÏ²¿·ÖΪËıßÐÎKPMN£¬ÉèËıßÐÎKPMNµÄÃæ»ýΪS£®
¢ÙÅжÏËıßÐÎKPMNµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£»
¢ÚÇó³öSµÄ×îСֵÓë×î´óÖµ£»
¢ÛËıßÐÎKPMNÄܳÉΪijÖÖÌØÊâËıßÐÎÂð£¿Ö¸³ö´ËʱÕÛºÛMNÐèÒªÂú×ãµÄÌõ¼þ£¬²¢Çó³öSµÄÖµ£®
·ÖÎö £¨1£©¢ÙÖ»ÒªÖ¤Ã÷¡ÏKNM=¡ÏKMN=80¡ã£¬¼´¿É½â¾öÎÊÌ⣮
¢ÚÈçͼ1ÖУ¬µ±µãBÓëµãDÖØºÏʱ£¬¡÷MKNµÄÃæ»ý×î´ó£¬ÉèDM=x£®¸ù¾Ý¹´¹É¶¨ÀíÁгö·½³Ì¼´¿É½â¾öÎÊÌ⣮
£¨2£©¢Ù½áÂÛ£ºËıßÐÎKPMNÊÇÆ½ÐÐËıßÐΣ®Ö»ÒªÖ¤Ã÷KN=PM£¬KN¡ÎPM¼´¿É£®
¢Úµ±µãDÓëMÖØºÏ£¬µãBÓëµãKÖØºÏʱ£¬S×î´ó£¬ÉèBD=B¡äD=BD¡ä=x£¬A¡äP=C¡äN=y£¬ÓÉÌâÒâ$\left\{\begin{array}{l}{2x+Y=5}\\{{x}^{2}=1+{y}^{2}}\end{array}\right.$£¬½â·½³Ì×é¼´¿É£®µ±MK¡ÍA¡äB¡äʱ£¬¸ù¾Ý´¹Ïß¶Î×î¶Ì¿ÉÖª£¬MKµÄ×îСֵΪ1£¬´ËʱSµÄ×îСֵΪ1£®
¢Ûµ±¡ÏNMB¡ä=60¡ã»ò120¡ãʱ£¬ËıßÐÎKPMNÊÇÁâÐΣ®Çó³öÁâÐεĸߺͱ߳¤¼´¿É£®
½â´ð ½â£º£¨1£©¢ÙÈçͼ2ÖУ¬![]()
¡ßDN¡ÎAM£¬
¡à¡ÏDNM=¡Ï1=80¡ã£¬
¡ß¡ÏKMN=¡Ï1=80¡ã£¬
¡à¡ÏNKM=180¡ã-¡ÏKNM-¡ÏKMN=20¡ã£¬
¹Ê´ð°¸Îª20¡ã£®
¢ÚÈçͼ1ÖУ¬µ±µãBÓëµãDÖØºÏʱ£¬¡÷MKNµÄÃæ»ý×î´ó£¬ÉèDM=x£®![]()
ÔÚRt¡÷AMDÖУ¬AD=1£¬AM=5-x£¬DM=x£¬
¡àx2=12+£¨5-x£©2£¬
¡àx=$\frac{13}{5}$£¬
ÓÉ¢Ù¿ÉÖª¡ÏDMN=¡ÏDNM£¬
¡àKN=DM=$\frac{13}{5}$£¬
¡à¡÷KNMµÄÃæ»ý×î´óֵΪ$\frac{1}{2}$•$\frac{13}{5}$•1=$\frac{13}{10}$£®
¹Ê´ð°¸Îª$\frac{13}{10}$£®
£¨2£©¢Ù½áÂÛ£ºËıßÐÎKPMNÊÇÆ½ÐÐËıßÐΣ®
ÀíÓÉ£ºÈçͼ3ÖУ¬![]()
¡ßA¡äB¡ä¡ÎC¡äD¡ä£¬
¡à¡ÏKNM=¡ÏNMB¡ä=¡ÏNMK£¬
¡àKN=KM£¬Í¬Àí¿ÉÖ¤KM=PM£¬
¡àKN=PM£¬¡ßKN¡ÎPM£¬
¡àËıßÐÎKPMNÊÇÆ½ÐÐËıßÐΣ®
¢ÚÈçͼ4ÖУ¬![]()
µ±µãDÓëMÖØºÏ£¬µãBÓëµãKÖØºÏʱ£¬S×î´ó£®ÉèBD=B¡äD=BD¡ä=x£¬A¡äP=C¡äN=y£¬
ÓÉÌâÒâ$\left\{\begin{array}{l}{2x+Y=5}\\{{x}^{2}=1+{y}^{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=\frac{10-\sqrt{22}}{3}}\\{y=\frac{2\sqrt{22}-5}{3}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=\frac{10+\sqrt{22}}{3}}\\{y=\frac{-5-2\sqrt{22}}{3}}\end{array}\right.$£¨ÉáÆú£©£®
¡àNK=$\frac{10-\sqrt{22}}{3}$£¬
¡àSµÄ×î´óÖµ=$\frac{10-\sqrt{22}}{3}$£®
µ±MK¡ÍA¡äB¡äʱ£¬¸ù¾Ý´¹Ïß¶Î×î¶Ì¿ÉÖª£¬MKµÄ×îСֵΪ1£¬´ËʱSµÄ×îСֵΪ1£®
¢ÛËıßÐÎKPMNÄܳÉΪijÖÖÌØÊâËıßÐΣ¬µ±¡ÏNMB¡ä=60¡ã»ò120¡ãʱ£¬ËıßÐÎKPMNÊÇÁâÐΣ®
´ËʱÁâÐεĸßΪ1£¬±ß³¤Îª$\frac{2\sqrt{3}}{3}$£¬ËùÒÔS=$\frac{2\sqrt{3}}{3}$£®
µãÆÀ ±¾Ì⿼²éËıßÐÎ×ÛºÏÌ⡢ƽÐÐËıßÐεÄÐÔÖÊ¡¢¹´¹É¶¨Àí¡¢¶þÔª¶þ´Î·½³Ì×é¡¢ÁâÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£¬µÚÒ»¸öÎÊÌâÖеĢڽâÌâµÄ¹Ø¼üÊÇÕýȷѰÕÒµãBµÄλÖ㬵ڶþ¸öÎÊÌâÖеĢڵĽâÌâ¹Ø¼üÊÇѧ»áÀûÓ÷½³Ì×é½â¾öÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮
| A£® | -10¡æ | B£® | -6¡æ | C£® | 6¡æ | D£® | 10¡æ |
| A£® | a=2£¬b=3 | B£® | a=-2£¬b=-3 | C£® | a=2»ò-2£¬b=3 | D£® | a=0£¬b=3 |
| A£® | -2 | B£® | 0 | C£® | $\sqrt{2}$ | D£® | 3 |
| A£® | 0.06=6¡Á10-3 | B£® | -0.000026=-2.6¡Á10-7 | ||
| C£® | 168000=1.68¡Á106 | D£® | 28000000=2.8¡Á107 |
| A£® | -3Óë$-\frac{1}{3}$ | B£® | |-3|Óë3 | C£® | $|{-\frac{1}{3}}|$Óë$-\frac{1}{3}$ | D£® | $-\frac{1}{3}$Óë$-|{-\frac{1}{3}}|$ |
| A£® | -2 | B£® | 0 | C£® | -1 | D£® | 1 |
| A£® | $\sqrt{2}$ | B£® | $1+\sqrt{2}$ | C£® | 2.4 | D£® | 2.3 |