题目内容
如图,在四边形ABCD中,∠DAB=∠DCB=90°,对角线AC与BD相交于点O,M、N分别是边BD、AC的中点.
![]()
(1)求证:MN⊥AC;
(2)当AC=8cm,BD=10cm时,求MN的长.
(1)见解析(2)3cm
【解析】
试题分析:(1)根据直角三角形斜边上的中线等于斜边的一半判定AM=MC=
BD,从而推知N点是AC边上的中点,所以MN是AC的中垂线;
(2)在Rt△AMN中,利用勾股定理求得MN的长.
(1)证明:连接AM、MC.
在△DCB和△BAD中,∠DAB=∠DCB=90°,M是边BD的中点,
∴AM=MC=
BD(直角三角形斜边上的中线等于斜边的一半);
∵N是AC的中点,
∴MN⊥AC;
(2)【解析】
∵AC=8cm,BD=10cm,M、N分别是边BD、AC的中点.
∴AM=5cm,AN=4cm;
在Rt△AMN中,MN=
=3cm(勾股定理).
![]()
练习册系列答案
相关题目