ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÔÚµÈÑüÌÝÐÎABCEÖУ¬BC¡ÎAEÇÒAB=BC£¬ÒÔµãEÎª×ø±êԵ㽨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Èô½«ÌÝÐÎABCDÑØACÕÛµþ£¬Ê¹µãBÇ¡ºÃÂäÔÚxÖáÉϵãDλÖ㬹ýC¡¢DÁ½µãµÄÖ±ÏßÓëyÖá½»ÓÚµãF£®£¨1£©ÊÔÅжÏËıßÐÎABCDÊÇÔõÑùµÄÌØÊâËıßÐΣ¬²¢ËµÃ÷ÄãµÄÀíÓÉ£»
£¨2£©Èç¹û¡ÏBAE=60¡ã£¬AB=2cm£¬ÄÇôÔÚyÖáÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹ÒÔP¡¢D¡¢FΪ¶¥µãµÄÈý½ÇÐι¹³ÉµÈÑüÈý½ÇÐΣ¬Èô´æÔÚ£¬ÇëÇó³öËùÓпÉÄܵÄPµã×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Èô½«¡÷EDFÑØxÖáÕý·½ÏòÒÔ1cm/sµÄËÙ¶ÈÆ½ÒƵ½µãEÓëµãAÖØºÏʱΪֹ£¬Éè¡÷EDFÔÚÆ½Òƹý³ÌÖÐÓë¡÷ECAÖØºÏ²¿·ÖµÄÃæ»ýΪS£¬Æ½ÒƵÄʱ¼äΪxÃ룬ÊÔÇó³öSÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½¼°×Ô±äÁ¿·¶Î§£¬²¢Çó³öºÎʱSÓÐ×î´óÖµ£¬×î´óÖµÊǶàÉÙ£¿
·ÖÎö£º£¨1£©ÓÉÒÑÖªÒ×µÃAB=BC=DA=AB£¬ËùÒÔËıßÐÎABCDΪÁâÐΣ®
£¨2£©Èô¡÷PDFµÈÑüÈý½ÇÐÎDF¿ÉÄÜΪÑü£¬·Ö±ðÌÖÂÛÕÒ³öÏà¹ØÏµ²¢Çó³ö×ø±ê½øÐÐÅжϣ®
£¨3£©ÓÉ£¨2£©¿ÉµÃ£¬AE=DE+AD=4cm£¬ÔòDE=2£¬AD=2£¬Éè¡÷DEFÆ½ÒÆµ½¡÷D¡äE¡äF¡ä£¬ÔòEE¡ä=x£¬E¡äM=
x£¬AD'=AE-D¡äE¡ä-EE'=4-2-x=2-x£¬¿ÉµÃS¡÷EME¡ä=
x2£¬S¡÷AD¡äN=
£¨2-x£©2£¬ÔòS=S¡÷ADE-S¡÷EME¡ä-S¡÷AD¡äN£¬´úÈëÕûÀí¿ÉµÃSÓëxµÄ½âÎöʽ£¬¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖÊÇóµÃ×î´óÖµ¼´¿É£®
£¨2£©Èô¡÷PDFµÈÑüÈý½ÇÐÎDF¿ÉÄÜΪÑü£¬·Ö±ðÌÖÂÛÕÒ³öÏà¹ØÏµ²¢Çó³ö×ø±ê½øÐÐÅжϣ®
£¨3£©ÓÉ£¨2£©¿ÉµÃ£¬AE=DE+AD=4cm£¬ÔòDE=2£¬AD=2£¬Éè¡÷DEFÆ½ÒÆµ½¡÷D¡äE¡äF¡ä£¬ÔòEE¡ä=x£¬E¡äM=
| 3 |
| ||
| 2 |
| ||
| 4 |
½â´ð£º½â£º£¨1£©ËıßÐÎABCDΪÁâÐΣ®
ÀíÓÉÈçÏ£ºÒòΪµãBºÍµãD¹ØÓÚÖ±ÏßAC¶Ô³ÆËùÒÔAB=AD£¬BC=DC£®ÓÉAB=BCµÃAB=BC=DA=AB£¬ËùÒÔËıßÐÎABCDΪÁâÐΣ®
£¨2£©ÒòΪËıßÐÎABCDΪÁâÐΣ¬ËùÒÔDF¡ÎAB£¬ËùÒÔ¡ÏCDE=¡ÏCED=60¡ã£¬ËùÒÔ¡÷CDEΪµÈ±ßÈý½ÇÐΣ¬ËùÒÔDE=CD=AB=2cm£®ÔÚRt¡÷DEFÖУ¬DF=DEcos60¡ã=2cos60¡ã=4cm£®
¢ÙÈç¹ûÒÔFΪ¶¥µã£¬¼´FP=FDʱ£¬Pµã×ø±êΪ£¨0£¬4+2
£©£¬£¨0£¬2
-4£©£»
¢ÚÈç¹ûÒÔPΪ¶¥µã£¬¼´PF=PDʱ£¬Pµã×ø±êΪ£¨0£¬
£©£»
¢ÛÈç¹ûÒÔDΪ¶¥µã£¬¼´DF=DPʱ£¬Pµã×ø±êΪ£¨0£¬-2
£©£®
×ÛÉÏËùÊö£¬Pµã×ø±êΪ£¨0£¬4+2
£©£¬£¨0£¬2
-4£©£¬£¨0£¬
£©£¬£¨0£¬-2
£©£®
£¨3£©

ÓÉ£¨2£©¿ÉµÃ£¬AE=DE+AD=4cm£¬ÔòDE=2£¬AD=2
¢ÙÉè¡÷DEFÆ½ÒÆµ½¡÷D¡äE¡äF¡ä£¬ÔòEE¡ä=x£¬E¡äA=4-x£¬AD'=AE¡ä-E¡äD¡ä=4-x-2=2-x£¬
¿ÉµÃS¡÷A¡äME¡ä=
£¨4-x£©2£¬S¡÷AD¡äN=
£¨2-x£©2£¬
ÔòS=S¡÷A¡äME¡ä-S¡÷AD¡äN=
£¨4-x£©2-
£¨2-x£©2£¨0¡Üx¡Ü1£©£»

¢ÚÉè¡÷DEFÆ½ÒÆµ½¡÷D¡äE¡äF¡ä£¬ÔòEE¡ä=x£¬E¡äM=
x£¬AD'=AE-D'E¡ä-EE¡ä=4-2-x=2-x
¿ÉµÃS¡÷EME¡ä=
x2
S¡÷AD¡äN=
£¨2-x£©2£¬
ÔòS=S¡÷AME-S¡÷EME¡ä-S¡÷AD¡äN=
¡Á2¡Á2
-
x2-
£¨2-x£©2=-
x2+
x+
£¨1¡Üx¡Ü2£©
µ±x=-
=-
=
£¬Ôòµ±x=1ʱ£¬SÓÐ×î´óÖµÊÇ£º
£¨2-1£©2=
£»
¢ÛÉè¡÷DEFÆ½ÒÆµ½¡÷D¡äE¡äF¡ä£¬ÔòEE¡ä=x£¬AE¡ä=4-x£¬
¿ÉµÃS=S¡÷A¡äME¡ä=
£¨4-x£©2£¨2¡Üx¡Ü4£©£®

ÀíÓÉÈçÏ£ºÒòΪµãBºÍµãD¹ØÓÚÖ±ÏßAC¶Ô³ÆËùÒÔAB=AD£¬BC=DC£®ÓÉAB=BCµÃAB=BC=DA=AB£¬ËùÒÔËıßÐÎABCDΪÁâÐΣ®
£¨2£©ÒòΪËıßÐÎABCDΪÁâÐΣ¬ËùÒÔDF¡ÎAB£¬ËùÒÔ¡ÏCDE=¡ÏCED=60¡ã£¬ËùÒÔ¡÷CDEΪµÈ±ßÈý½ÇÐΣ¬ËùÒÔDE=CD=AB=2cm£®ÔÚRt¡÷DEFÖУ¬DF=DEcos60¡ã=2cos60¡ã=4cm£®
¢ÙÈç¹ûÒÔFΪ¶¥µã£¬¼´FP=FDʱ£¬Pµã×ø±êΪ£¨0£¬4+2
| 3 |
| 3 |
¢ÚÈç¹ûÒÔPΪ¶¥µã£¬¼´PF=PDʱ£¬Pµã×ø±êΪ£¨0£¬
2
| ||
| 3 |
¢ÛÈç¹ûÒÔDΪ¶¥µã£¬¼´DF=DPʱ£¬Pµã×ø±êΪ£¨0£¬-2
| 3 |
×ÛÉÏËùÊö£¬Pµã×ø±êΪ£¨0£¬4+2
| 3 |
| 3 |
2
| ||
| 3 |
| 3 |
£¨3£©
ÓÉ£¨2£©¿ÉµÃ£¬AE=DE+AD=4cm£¬ÔòDE=2£¬AD=2
¢ÙÉè¡÷DEFÆ½ÒÆµ½¡÷D¡äE¡äF¡ä£¬ÔòEE¡ä=x£¬E¡äA=4-x£¬AD'=AE¡ä-E¡äD¡ä=4-x-2=2-x£¬
¿ÉµÃS¡÷A¡äME¡ä=
| ||
| 6 |
| ||
| 4 |
ÔòS=S¡÷A¡äME¡ä-S¡÷AD¡äN=
| ||
| 6 |
| ||
| 4 |
¢ÚÉè¡÷DEFÆ½ÒÆµ½¡÷D¡äE¡äF¡ä£¬ÔòEE¡ä=x£¬E¡äM=
| 3 |
¿ÉµÃS¡÷EME¡ä=
| ||
| 2 |
S¡÷AD¡äN=
| ||
| 4 |
ÔòS=S¡÷AME-S¡÷EME¡ä-S¡÷AD¡äN=
| 1 |
| 2 |
| 3 |
| ||
| 2 |
| ||
| 4 |
| 3 |
| 4 |
| 3 |
| 3 |
| 3 |
µ±x=-
| b |
| 2a |
| ||||
2¡Á(-
|
| 2 |
| 3 |
| ||
| 4 |
| ||
| 4 |
¢ÛÉè¡÷DEFÆ½ÒÆµ½¡÷D¡äE¡äF¡ä£¬ÔòEE¡ä=x£¬AE¡ä=4-x£¬
¿ÉµÃS=S¡÷A¡äME¡ä=
| ||
| 6 |
µãÆÀ£º±¾Ì⿼²éÌÝÐΣ¬ÁâÐΡ¢Ö±½ÇÈý½ÇÐΡ¢¶þ´Îº¯ÊýµÄÏà¹ØÖªÊ¶µÄÀí½â¼°ÔËÓã¬×ÛºÏÐÔÇ¿£¬×öÌâʱҪעÒâ֪ʶµãÖ®¼äµÄÁªÏµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿