题目内容

19.观察下面的变形规律:$\frac{1}{1×2}$=1-$\frac{1}{2}$;$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$;$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$;…
解答下面的问题:
(1)若n为正整数,请你猜想:$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$;
(2)求和:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2010×2011}$=$\frac{2010}{2011}$.

分析 (1)根据变形规律直接可以写出答案.
(2)根据规律展开即可化简求值.

解答 解:(1)$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
故答案为$\frac{1}{n}$-$\frac{1}{n+1}$

(2)原式=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2010}$-$\frac{1}{2011}$=1-$\frac{1}{2011}$=$\frac{2010}{2011}$.
故答案为$\frac{2010}{2011}$.

点评 本题考查分数的加法法则,运用规律把分数拆为两个分数的差是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网