题目内容
15.△ABC中,∠A=50°,高BE、CF所在的直线交于点O,∠BOC的度数是130°或50°.分析 本题中因为“高BE、CF所在直线交于点O,且点E、F不与点B、C重合”排除了三角形是直角三角形的可能,所以要分两种情况讨论.
解答
解:本题要分两种情况讨论如图:
①当交点在三角形内部时(如图1),
在四边形AFOE中,∠AFC=∠AEB=90°,∠A=50°,
根据四边形内角和等于360°得,
∠EOF=180°-∠A=180°-50°=130°,
故∠BOC=130°;
②当交点在三角形外部时(如图2),![]()
在△AFC中,∠A=50°,∠AFC=90°,
故∠1=180°-90°-50°=40°,
∵∠1=∠2,
∴在△CEO中,∠2=40°,∠CEO=90°,
∴∠EOF=180°-90°-40°=70°,
即∠BOC=50°,
综上所述:∠BOC的度数是130°或50°.
故答案为:130°或50°.
点评 本题考查的是三角形内角和定理,在解答此题时要注意进行分类讨论,不要漏解.
练习册系列答案
相关题目