题目内容
【题目】请认真阅读下面的数学小探究,完成所提出的问题
(1)探究1,如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=3,将边 AB绕点B顺时针旋转90°得到线段BD,连接CD,过点D作BC边上的高DE,则DE与BC的数量关系是 . △BCD的面积为 .
(2)探究2,如图②,在一般的Rt△ABC中,∠ACB=90°,BC=
,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,请用含
的式子表示△BCD的面积,并说明理由.
![]()
【答案】(1)DE=BC,4.5;(2)![]()
【解析】
(1)证明△ACB≌△DEB,根据全等三角形的性质得到DE=AC=BC=3,根据三角形的面积公式计算;
(2)作DG⊥CB交CB的延长线于G,证明△ACB≌△BGD,得到DG=BC=a,根据三角形的面积公式计算;
(1)∵△ABC是等腰直角三角形,
![]()
∴CA=CB,∠A=∠ABC=45°,
由旋转的性质可知,BA=BD,∠ABD=90°,
∴∠DBE=45°,
在△ACB和△DEB中,
,
∴△ACB≌△DEB(AAS)
∴DE=AC=BC=3,
∴
;
故答案为:DE=BC,
;
(2)作DG⊥CB交CB的延长线于G,
![]()
∵∠ABD=90°,
∴∠ABC+∠DBG=90°,又∠ABC+∠A=90°,
∴∠A=∠DBG,
在△ACB和△BGD中,
,
∴△ACB≌△BGD(AAS),
∴DG=BC=
,
∴
.
练习册系列答案
相关题目