题目内容
【题目】如图,△AED的顶点D在△ABC的BC边上,∠E=∠B,AE=AB, ∠EAB=∠DAC.
(1)求证:△AED≌△ABC.
(2)若∠E=40°,∠DAC=30°,求∠BAD的度数.
![]()
【答案】(1)证明见解析;(2)45°
【解析】分析:(1)易证∠EAD=∠BAC,再由已知条件即可证明△AED≌△ABC;
(2))由△AED≌△ABC,推出AD=AC,∠B=∠E=40°,由∠DAC=30°,推出∠C=∠ADC=
(180°-30°)=75°,由∠ADC=∠B+∠BAD,即可求出∠BAD.
本题解析:
∵∠EAB=∠DAC
∴∠EAB+∠BAD=∠DAC+∠BAD
即∠EAD=∠BAC
又∵AE=AB,∠E=∠B
∴△AED≌△ABC.
∴AD=AC
∵∠DAC=30°
∴∠ADC=∠C=75°
∴∠B=∠E=40°
∵∠B+∠BAD=∠ADC
∴∠BAD=∠ADC-∠B=75°-30°=45°
练习册系列答案
相关题目