题目内容
计算下列各题:(用简便方法计算)
(1)-102n×100×(-10)2n-1;
(2)[(-a)(-b)2•a2b3c]2;
(3)(x3)2÷x2÷x+x3÷(-x)2•(-x2);
(4)
.
解:(1)-102n×100×(-10)2n-1,
=-102n•102•(-102n-1),
=102n+2+2n-1,
=104n+1;
(2)[(-a)(-b)2•a2b3c]2,
=[(-a)b2•a2b3c]2,
=(-a3b5c)2,
=a6b10c2;
(3)(x3)2÷x2÷x+x3÷(-x)2•(-x2),
=x6÷x2÷x+x3÷x2•(-x2),
=x3-x3,
=0;
(4)
,
=[(-9)×(-
)×
]3,
=23,
=8.
分析:根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,分别计算即可.
点评:本题主要考查同底数的幂的乘法,幂的乘方的性质,积的乘方的性质,同底数幂的除法,熟练掌握运算性质并灵活运用是解题的关键.
=-102n•102•(-102n-1),
=102n+2+2n-1,
=104n+1;
(2)[(-a)(-b)2•a2b3c]2,
=[(-a)b2•a2b3c]2,
=(-a3b5c)2,
=a6b10c2;
(3)(x3)2÷x2÷x+x3÷(-x)2•(-x2),
=x6÷x2÷x+x3÷x2•(-x2),
=x3-x3,
=0;
(4)
=[(-9)×(-
=23,
=8.
分析:根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,分别计算即可.
点评:本题主要考查同底数的幂的乘法,幂的乘方的性质,积的乘方的性质,同底数幂的除法,熟练掌握运算性质并灵活运用是解题的关键.
练习册系列答案
相关题目