题目内容

已知:x2+xy+y=14,y2+xy+x=28,求x+y的值.

-7或6 【解析】试题分析:由x2+xy+y=14,y2+xy+x=28,即可求得x2+2xy+y2+x+y=42,则变形得(x+y)2+(x+y)-42=0,将x+y看作整体,利用因式分解法即可求得x+y的值. 试题解析: ∵x2+xy+y=14①,y2+xy+x=28②, ∴①+②,得:x2+2xy+y2+x+y=42, ∴(x+y)2+(x+y)-42=0, ...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网