题目内容
如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交圆O于点D,连接AD,若∠ABC=45°,则下列结论正确的是
- A.AD=
BC - B.AD=
AC - C.AC>AB
- D.AD>DC
A
分析:由AC是⊙O的切线,A为切点得到∠CAB=90°,又∠ABC=45°由此可以推出△ABC是等腰直角三角形;而AB是⊙O的直径则∠ADB=90°,由等腰三角形的性质得到点D是BC的中点,再由直角三角形中斜边上的中线等于斜边的一半可知AD=BD=CD=
BC,故只有A正确.
解答:∵AC是⊙O的切线,A为切点,
∴∠CAB=90°,
∵∠ABC=45°,
∴△ABC是等腰直角三角形,AB=AC.
∵AB是⊙O的直径,
∴∠ADB=90°,
∴点D是BC的中点,
∴AD=BD=CD=
BC,
故只有A正确.
故选A.
点评:本题利用了切线的性质,等腰直角三角形的判定和性质,直径对的圆周角是直角等知识求解.
分析:由AC是⊙O的切线,A为切点得到∠CAB=90°,又∠ABC=45°由此可以推出△ABC是等腰直角三角形;而AB是⊙O的直径则∠ADB=90°,由等腰三角形的性质得到点D是BC的中点,再由直角三角形中斜边上的中线等于斜边的一半可知AD=BD=CD=
解答:∵AC是⊙O的切线,A为切点,
∴∠CAB=90°,
∵∠ABC=45°,
∴△ABC是等腰直角三角形,AB=AC.
∵AB是⊙O的直径,
∴∠ADB=90°,
∴点D是BC的中点,
∴AD=BD=CD=
故只有A正确.
故选A.
点评:本题利用了切线的性质,等腰直角三角形的判定和性质,直径对的圆周角是直角等知识求解.
练习册系列答案
相关题目