题目内容

如图,点O为等边三角形ABC内一点,连接OA,OB,OC,以OB为一边作∠OBM=60°,且BO=BM,连接CM,OM.

(1)判断AO与CM的大小关系并证明;

(2)若OA=8,OC=6,OB=10,判断△OMC的形状并证明.

(1)AO=CM (2)△OMC是直角三角形 【解析】试题分析:(1)先证明△OBM是等边三角形,得出OM=OB,∠ABC=∠OBC,由SAS证明△AOB≌△CMB,即可得出结论; (2)由勾股定理的逆定理即可得出结论. 试题解析:【解析】 (1)AO=CM.理由如下: ∵∠OBM=60°,OB=BM,∴△OBM是等边三角形,∴OM=OB=10,∠ABC=∠OBC=60°...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网