题目内容
考点:梯形,全等三角形的判定与性质,勾股定理
专题:
分析:(1)首先延长DF、BE交于点G,进而得出△EDG≌△ECB,即可得出AG,BG的长;
(2)利用已知得出∠FBG=∠G,再利用∠G=∠EBC,得出∠FBG=∠EBC,进而得出答案.
(2)利用已知得出∠FBG=∠G,再利用∠G=∠EBC,得出∠FBG=∠EBC,进而得出答案.
解答:
(1)解:延长DF、BE交于点G,
∵E为DC中点,
∴DE=CE,
∵AD∥BC,
∴DG∥BC,
∴∠D=∠EBC,∠GDE=∠C,
在△EDG与△ECB中,
,
∴△EDG≌△ECB(AAS)
∴BC=DG,BE=GE,
∵BC=9,
∴DG=9,
又AD=3,
∴AG=AD+DG=3+9=12,
∴BG=
=13,
∴BE=EG,
∴BE=
BG=
;
(2)证明:由(1)得DG=BC,
∵DF+BF=BC,
∴DF+BF=DG,
∴BF=FG,
∴∠FBG=∠G,
又∵∠G=∠EBC,
∴∠FBG=∠EBC,
即BE平分∠FBC..
∵E为DC中点,
∴DE=CE,
∵AD∥BC,
∴DG∥BC,
∴∠D=∠EBC,∠GDE=∠C,
在△EDG与△ECB中,
|
∴△EDG≌△ECB(AAS)
∴BC=DG,BE=GE,
∵BC=9,
∴DG=9,
又AD=3,
∴AG=AD+DG=3+9=12,
∴BG=
| AB2+AG2 |
∴BE=EG,
∴BE=
| 1 |
| 2 |
| 13 |
| 2 |
(2)证明:由(1)得DG=BC,
∵DF+BF=BC,
∴DF+BF=DG,
∴BF=FG,
∴∠FBG=∠G,
又∵∠G=∠EBC,
∴∠FBG=∠EBC,
即BE平分∠FBC..
点评:此题主要考查了全等三角形的判定与性质以及勾股定理等知识,利用已知得出△EDG≌△ECB是解题关键.
练习册系列答案
相关题目
| A、192 | B、96 |
| C、48 | D、144 |
若a+b<0,ab<0,则下列说法正确的是( )
| A、a、b同号 |
| B、a、b异号且负数的绝对值较大 |
| C、a、b异号且正数的绝对值较大 |
| D、以上均有可能 |