题目内容
函数y=中自变量x的取值范围 .
已知二次函数y=x2-4x-3,若-1≤x≤6,则y的取值范围为 .
【问题情境】一节数学课后,老师布置了一道课后练习题:
如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.
(1)阅读理解,完成解答
本题证明的思路可用下列框图表示:
根据上述思路,请你完整地书写这道练习题的证明过程;
(2)特殊位置,证明结论
若CE平分∠ACD,其余条件不变,求证:AE=BF;
(3)知识迁移,探究发现
如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)
2015年,县委、县政府做出了“小微企业富民,大中企业强县,唱响千年文化,建设美好平定”的决策,如图是小明制作的一个正方体的表面展开图,原正方体中与“建”字所在的面相对的面上标的字是( )
A.美 B.好 C.平 D.定
如图,从顶点A出发,沿着边长为1的正方形的四个顶点依次跳舞,舞步长为1.第一次顺时针移动1步,第二次逆时针移动2步,第三次顺时针移动3步,……以此类推.
(1)移动4次后到达何处?(直接给出答案)
(2)移动2012次后到达何处?
下列命题的逆命题不正确的是 ( )
A. 同旁内角互补,两直线平行 B.正方形的四个角都是直角
C. 若xy=0,则x=0 D. 平行四边形的对角线互相平分
在平面直角坐标系中,抛物线过点,,与轴交于点.
(1)求抛物线的函数表达式;
(2)若点在抛物线的对称轴上,当的周长最小时,求点 的坐标;
(3)在抛物线的对称轴上是否存在点,使成为以为直角边的直角三角形?若存在,求出点的坐标;若不存在,请说明理由.
如图1, 和都是等腰直角三角形,其中,点与点重合,点在上,,.如图2,保持不动,沿着线段从点向点移动, 当点与点重合时停止移动.设,与重叠部分的面积为,则关于的函数图象大致是( )
如图,把矩形ABCD沿对角线BD折叠使点C落在F处,BF交AD于点E.
(1)求证:△BEA≌△DEF;
(2)若AB=2,AD=4,求AE的长.