题目内容

9.顶点为(-5,0),且开口方向、形状与函数y=-$\frac{1}{3}$x2的图象相同的抛物线是y=-$\frac{1}{3}$(x+5)2

分析 设抛物线的解析式为y=a(x-h)2+k,由条件可以得出a=-$\frac{1}{3}$,再将定点坐标代入解析式就可以求出结论.

解答 解:∵顶点为(-5,0),且开口方向、形状与函数y=-$\frac{1}{3}$x2的图象相同的抛物线,
∴h=-5,a=-$\frac{1}{3}$,k=0,
∴设抛物线的解析式为y=-$\frac{1}{3}$(x+5)2
故答案为:y=-$\frac{1}{3}$(x+5)2

点评 此题考查了待定系数法求函数解析式,根据顶点式运用待定系数法求二次函数的解析式,在解答时运用抛物线的性质求出a值是关健.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网