题目内容

如图,已知菱形ABCD的两条对角线分别是6和8,M、N分别是BC、CD的中点,点P是对角线BD上一点,则PM+PN的最小值是________.

5

【解析】

试题分析:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.

作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,

∵四边形ABCD是菱形,

∴AC⊥BD,∠QBP=∠MBP,

即Q在AB上,

∵MQ⊥BD,

∴AC∥MQ,

∵M为BC中点,

∴Q为AB中点,

∵N为CD中点,四边形ABCD是菱形,

∴BQ∥CD,BQ=CN,

∴四边形BQNC是平行四边形,

∴NQ=BC,

∵四边形ABCD是菱形,

∴CP=AC=3,BP=BD=4,

在Rt△BPC中,由勾股定理得:BC=5,

即NQ=5,

∴MP+NP=QP+NP=QN=5,

故答案为:5

考点:1. 轴对称-最短路线问题;2.菱形的性质.

考点分析: 考点1:四边形 四边形:四边形的初中数学中考中的重点内容之一,分值一般为10-14分,题型以选择,填空,解答证明或融合在综合题目中为主,难易度为中。主要考察内容:①多边形的内角和,外角和等问题②图形的镶嵌问题③平行四边形,矩形,菱形,正方形,等腰梯形的性质和判定。突破方法:①掌握多边形,四边形的性质和判定方法。熟记各项公式。②注意利用四边形的性质进行有关四边形的证明。③注意开放性题目的解答,多种情况分析。 试题属性
  • 题型:
  • 难度:
  • 考核:
  • 年级:
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网