题目内容
设x、y都是正整数,则方程x2-y2=2001的解的个数是______.
∵x2-y2=2001,
∴(x+y)(x-y)=2001,
∴x+y,x-y分别为2001的两个约数,且x+y>x-y,
又∵1995=3×667,1995=1×1995,
故可得:
,
共2组.
故答案为:2.
∴(x+y)(x-y)=2001,
∴x+y,x-y分别为2001的两个约数,且x+y>x-y,
又∵1995=3×667,1995=1×1995,
故可得:
|
|
故答案为:2.
练习册系列答案
相关题目
设a,b都是正整数,且a-b、3b、a+b(a>2b)构成一直角三角形三边的长,则这个三角形的任一边的长不可能是( )
| A、12 | B、13 | C、14 | D、15 |
设x、y都是正整数,且满足y=
+
,则y的值不可能是( )
| x-16 |
| x+200 |
| A、18 | B、34 | C、54 | D、108 |