题目内容

20.如图,有一圆心角为120°,半径长为6cm的扇形,若将OA、OB重合后围成一圆锥侧面,那么圆锥的高是(  )
A.4$\sqrt{2}$B.2$\sqrt{3}$C.2$\sqrt{2}$D.4$\sqrt{3}$

分析 本题已知扇形的圆心角及半径就是已知圆锥的底面周长,能求出底面半径,底面半径,圆锥的高,母线长即扇形半径,构成直角三角形,再利用勾股定理解决.

解答 解:由圆心角为120°、半径长为6,
可知扇形的弧长为$\frac{2π•6}{3}$=4π,
即圆锥的底面圆周长为4π,
则底面圆半径为2,
已知OA=6,
由勾股定理得圆锥的高是4$\sqrt{2}$.
故A.

点评 本题主要考查了圆锥的侧面与扇形的关系,圆锥弧长等于圆锥底面周长,圆锥母线长等于扇形半径长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网