题目内容

如图①中:共有1个小立方体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;…,则第⑥个图中,看不见的小立方体有(  )个.
A、37B、64C、125D、88
考点:规律型:图形的变化类
专题:
分析:由图可知,共有小立方体个数为序号数的立方,看不见的小正方体的个数=(序号数-1)3,由此规律解决问题.
解答:解:n=1时,共有小立方体的个数为1,看不见的小立方体的个数为0个;
n=2时,共有小立方体的个数为2×2×2=8,看不见的小立方体的个数为(2-1)×(2-1)×(2-1)=1个;
n=3时,共有小立方体的个数为3×3×3=27,看不见的小立方体的个数为(3-1)×(3-1)×(3-1)=8个;

n=6时,共有小立方体的个数为6×6×6=216,看不见的小立方体的个数为(6-1)×(6-1)×(6-1)=125个.
故选:C.
点评:此题考查图形的变化规律,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网