题目内容
关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a= ,b= .
估计介于( )
A.0.4与0.5之间 B.0.5与0.6之间
C.0.6与0.7之间 D.0.7与0.8之间
先化简,再求值:,然后≤x≤的范围内选取一个合适的整数作为x的值代入求值.
已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).
(1)求证:方程有两个不相等的实数根;
(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.
现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是 .
若关于x的方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是( )
A.k>﹣1
B.k<﹣1
C.k≥﹣1且k≠0
D.k>﹣1且k≠0
如图,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.求证:
(1)△AEF≌△BEC;
(2)四边形BCFD是平行四边形.
当x=﹣2时,代数式x+1的值是( )
A.﹣1 B.﹣3 C.1 D.3
数据1,2,3,4,5的标准差是 .