题目内容

7.两条直线y=k1x+b1和y=k2x+b2相交于点A(3,4),则方程组$\left\{\begin{array}{l}{y={k}_{1}x+{b}_{1}}\\{y={k}_{2}x+{b}_{2}}\end{array}\right.$的解是(  )
A.$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$B.$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$C.$\left\{\begin{array}{l}{x=-3}\\{y=-4}\end{array}\right.$D.$\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$

分析 两个一次函数组成的二元一次方程组的解就是两函数图象的交点坐标.

解答 解:∵直线y=k1x+b1和y=k2x+b2相交于点A(3,4),
∴方程组$\left\{\begin{array}{l}{y={k}_{1}x+{b}_{1}}\\{y={k}_{2}x+{b}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$,
故选:B.

点评 此题主要考查了一次函数与二元一次方程组,关键是掌握二元一次方程可以化成一次函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网