题目内容

计算:
(1)(xy-x2)÷(
x2+y2
xy
-2)•
x-y
x2

(2)(
x+2
x2-2x
-
x-1
x2-4x+4
x-4
x
分析:(1)先把括号内的式子提取公因式、通分,然后再按照从左到右的顺序先算除法,再算乘法,最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.
(2)先把括号内的分式通分,化为最简后再算除法,分子、分母进行约分后,注意运算的结果要化成最简分式或整式.
解答:解:(1)原式=[-x(x-y)]÷(
x2+y2-2xy
xy
)•
x-y
x2

=[-x(x-y)]÷
(x-y)2
xy
x-y
x2

=[-x(x-y)]×
xy
(x-y)2
x-y
x2

=
-x2y
x-y
x-y
x2

=-y;
(2)原式=[
x+2
x(x-2)
-
x-1
(x-2)2
x-4
x

=[
(x+2)(x-2)
x(x-2)2
-
x(x-1)
x(x-2)2
x-4
x

=
x2-4-x2+x
x(x-2)2
÷
x-4
x

=
x-4
x(x-2)2
×
x
x-4

=
1
(x-2)2

=
1
x2-2x+4
点评:本题主要考查分式的混合运算,通分、提取公因式和约分是解题的关键.此题难度不大,但做起来一定要细心.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网