题目内容
计算:
(1)(xy-x2)÷(
-2)•
(2)(
-
)÷
.
(1)(xy-x2)÷(
| x2+y2 |
| xy |
| x-y |
| x2 |
(2)(
| x+2 |
| x2-2x |
| x-1 |
| x2-4x+4 |
| x-4 |
| x |
分析:(1)先把括号内的式子提取公因式、通分,然后再按照从左到右的顺序先算除法,再算乘法,最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.
(2)先把括号内的分式通分,化为最简后再算除法,分子、分母进行约分后,注意运算的结果要化成最简分式或整式.
(2)先把括号内的分式通分,化为最简后再算除法,分子、分母进行约分后,注意运算的结果要化成最简分式或整式.
解答:解:(1)原式=[-x(x-y)]÷(
)•
=[-x(x-y)]÷
•
=[-x(x-y)]×
•
=
•
=-y;
(2)原式=[
-
]÷
=[
-
]÷
=
÷
=
×
=
=
.
| x2+y2-2xy |
| xy |
| x-y |
| x2 |
=[-x(x-y)]÷
| (x-y)2 |
| xy |
| x-y |
| x2 |
=[-x(x-y)]×
| xy |
| (x-y)2 |
| x-y |
| x2 |
=
| -x2y |
| x-y |
| x-y |
| x2 |
=-y;
(2)原式=[
| x+2 |
| x(x-2) |
| x-1 |
| (x-2)2 |
| x-4 |
| x |
=[
| (x+2)(x-2) |
| x(x-2)2 |
| x(x-1) |
| x(x-2)2 |
| x-4 |
| x |
=
| x2-4-x2+x |
| x(x-2)2 |
| x-4 |
| x |
=
| x-4 |
| x(x-2)2 |
| x |
| x-4 |
=
| 1 |
| (x-2)2 |
=
| 1 |
| x2-2x+4 |
点评:本题主要考查分式的混合运算,通分、提取公因式和约分是解题的关键.此题难度不大,但做起来一定要细心.
练习册系列答案
相关题目