题目内容

如图,直线y=k1x+b(k1≠0)与双曲线y=(k2≠0)相交于A(1,m)、B(-2,-1)两点.
(1)求直线和双曲线的解析式.
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系式.
【答案】分析:(1)将B坐标代入双曲线解析式求出k2的值,确定出反比例解析式,将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B坐标代入直线解析式求出k1与b的值,即可确定出直线解析式;
(2)先根据横坐标的正负分象限,再根据反比例函数的增减性判断即可.
解答:解:(1)∵双曲线y=经过点B(-2,-1),
∴k2=2,
∴双曲线的解析式为:y=
∵点A(1,m)在双曲线y=上,
∴m=2,即A(1,2),
由点A(1,2),B(-2,-1)在直线y=k1x+b上,得
解得:
∴直线的解析式为:y=x+1;

(2)∵A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3
∴A1与A2在第三象限,A3在第一象限,即y1<0,y2<0,y3>0,
则y2<y1<y3
点评:此题考查了反比例函数与一次函数的交点问题,利用了待定系数法,熟练掌握待定系数法是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网