题目内容

6.如图,菱形ABCD的边长为2cm,∠A=60°,弧BD是以点A为圆心、AB长为半径的弧,弧CD是以点B为圆心、BC长为半径的弧,则阴影部分的面积为(  )
A.1cm2B.$\sqrt{3}c{m^2}$C.2cm2D.πcm2

分析 连接BD,判断出△ABD是等边三角形,根据等边三角形的性质可得∠ABD=60°,再求出∠CBD=60°,然后求出阴影部分的面积=S△ABD,计算即可得解.

解答 解:如图,连接BD,
∵四边形ABCD是菱形,
∴AB=AD,
∵∠A=60°,
∴△ABD是等边三角形,
∴∠ABD=60°,
又∵菱形的对边AD∥BC,
∴∠ABC=180°-60°=120°,
∴∠CBD=120°-60°=60°,
∴S阴影=S扇形CBD-(S扇形BAD-S△ABD),
=S△ABD
=$\frac{1}{2}$×2×($\frac{\sqrt{3}}{2}$×2),
=$\sqrt{3}$cm2
故选B.

点评 本题考查了菱形的性质,扇形的面积的计算,熟记性质并作辅助线构造出等边三角形是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网