题目内容

如图,抛物线数学公式过A(0,2)、B(1,3)两点,CB⊥x轴于C,四边形CDEF为正方形,点D在线段BC上,点E在此抛物线上,且在直线BC的左侧.
(1)求此抛物线的函数关系式;
(2)求正方形CDEF的边长.

解:(1)由题意得出:

解得:
故此抛物线的函数关系式为:y=-x2+x+2;

(2)设正方形CDEF的边长为t,则点E的坐标为(1-t,t),
故由题意得出:t=-(1-t)2+(1-t)+2,
解得:t1=,t2=(不合题意舍去),
答:正方形CDEF的边长为
分析:(1)将A(0,2)、B(1,3)两点代入解析式求出b,c即可得出解析式;
(2)首先设正方形CDEF的边长为t,则点E的坐标为(1-t,t),进而代入解析式求出正方形CDEF的边长.
点评:此题主要考查了待定系数法求二次函数解析式以及正方形的性质,根据已知表示出E点坐标是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网