如图,△ABC,△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,试说明:△CDA≌△CEB.

答案见解析 【解析】试题分析:根据等腰直角三角形的性质得出CE=CD,BC=AC,再利用全等三角形的判定证明即可. 试题解析:证明:∵△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°, ∴CE=CD,BC=AC, ∴∠ACB﹣∠ACE=∠DCE﹣∠ACE, ∴∠ECB=∠DCA, 在△CDA与△CEB中, , ∴△CDA≌△CEB.

直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是( )

A. B. C. D.

C 【解析】试题分析:根据折叠变换的性质可知AE=BE,设CE=x,可知BE=8-x,根据勾股定理得,即,解得x=,因此可求tan∠CBE=. 故选C

在Rt△ABC中,∠C=90°,下列说法正确的有( )

①sinA>cosA ②sin2A+cos2A=1 ③tanA·tanB=1 ④tanA=

A. ①②③ B. ②③④ C. ①③④ D. ①②③④

B 【解析】∵∠C=90°,∴,已知中不知BC与AC在大小关系,故①错误; ,故②正确; ,故③正确; ,故④正确, 故选B.

阅读下面的证明过程,指出其错误.

已知△ABC

求证:∠A+∠B+∠C=180°

证明:过A作DE∥BC,且使∠1=∠C

∵DE∥BC(画图)

∴∠2=∠B(两直线平行,内错角相等)

∵∠1=∠C(画图)

∴∠B+∠C+∠3=∠2+∠1+∠3=180°

即∠BAC+∠B+∠C=180°

答案见解析 【解析】试题分析:注意作辅助线的方法,过点A作的辅助线不能同时满足两个条件.只能作平行线后,根据平行线的性质得到∠1=∠C. 错误①:过A作DE∥BC,且使∠1=∠C,应改为:过A作DE∥BC. 错误②:∵∠1=∠C(画图),理由错,应改为:两直线平行,内错角相等.

如图,DAE是一条直线,DE∥BC,则∠BAC=___度.

46°. 【解析】试题分析:∵DE∥BC,∴∠DAC=124°,∴∠BAC=∠DAC﹣∠DAB=124°﹣78°=46°.故答案为:46°.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网