题目内容
方程2x+y=9的正整数解有( )
A. 1组 B. 2组 C. 3组 D. 4组
△ABC中,∠A=90°,点D在线段BC上(端点B除外),
∠EDB=∠C,BE⊥DE于点E,DE与AB相交于点F,过F作FM∥AC交BD于M.(1)当AB=AC时(如图1),求证:①FM=MD;②FD=2BE;(2)当AB=kAC时(k>0,如图2),用含k的式子表示线段FD与BE之间的数量关系,并说明理由.
如图,△ABC内接于圆O,∠P=60°,弧BC=弧CA,则△ABC的特殊形状是__.
解不等式组: ,并在数轴上表示不等式组的解集.
适合不等式组的全部整数解的和是( )
A. -1 B. 0 C. 1 D. 2
如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,点D是BC边上一动点(不与点B、C重合),过点D作DE⊥BC交AB边于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处,当△AEF为直角三角形时,求BD的长。
计算:(1)
在平面直角坐标系xOy中,点P与点Q不重合,以点P为圆心作经过Q的圆,则称该圆为点P、Q的“相关圆”
(1)已知点P的坐标为(2,0)①若点Q的坐标为(0,1),求点P、Q的“相关圆”的面积;②若点Q的坐标为(3,n),且点P、Q的“相关圆”的半径为,求n的值;
(2)已知△ABC为等边三角形,点A和点B的坐标分别为(﹣,0)、(,0),点C在y轴正半轴上,若点P、Q的“相关圆”恰好是△ABC的内切圆且点Q在直线y=2x上,求点Q的坐标.
(3)已知△ABC三个顶点的坐标为:A(﹣3,0)、B(,0),C(0,4),点P的坐标为(0, ),点Q的坐标为(m, ),若点P、Q的“相关圆”与△ABC的三边中至少一边存在公共点,直接写出m的取值范围.
关于x的一元二次方程的两实根分别为2和b,则ab=____。