题目内容
如图,抛物线y=﹣x2+bx+c与x轴分别交于A(1,0),B(-5,0)两点.
(1)求抛物线的解析式;
(2)在第一象限内取一点C,作CD垂直x轴于点D,连接AC,且AD=5,CD=8,将Rt△ACD沿x轴向左平移m个单位,当点C落在抛物线上时,求m的值;
![]()
(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由.
练习册系列答案
相关题目
某校九年级(1)班全体学生体能测试成绩统计如下表(总分30分):
成绩(分) | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
人数(人) | 2 | 5 | 6 | 6 | 8 | 7 | 6 |
根据上表中的信息判断,下列结论中错误的是( )
A. 该班一共有40名同学 B. 成绩的众数是28分
C. 成绩的中位数是27分 D. 成绩的平均数是27.45分