题目内容


在平行四边形ABCD中,EBC边上的一点.连结AE.

(1)若AB=AE, 求证:∠DAE=∠D

(2)若点EBC的中点,连接BD,交AEF,求EFFA的值.

                                      

   


1)证明:∵四边形ABCD为平行四边形,

∴  ∠B=∠D   ADBC.

∴∠AEB=∠EAD.    又∵AE=AB    ∴∠B=∠AEB.  

∴∠B=∠EAD.     ∠EAD=∠D-

(2)∵ADBC

∴∠FAD=∠FEB,∠ADF=∠EBF   

∴△ADF∽△EBF

EFFA= BEAD= BE BC=1︰2  

   

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网