题目内容

如图,已知反比例函数y=
2
x
的图象与正比例函数y=kx的图象交于点A(m,-2).
(1)求正比例函数的解析式及两函数图象另一个交点B的坐标;
(2)试根据图象写出不等式
2
x
≥kx的解集;
(3)在反比例函数图象上是否存在点C,使△OAC为等边三角形?若存在,求出点C的坐标;若不存在,请说明理由.
考点:反比例函数与一次函数的交点问题
专题:代数综合题,数形结合
分析:(1)把点A的坐标代入y=
2
x
求出m的值,再运用A的坐标求出k,两函数解析式联立得出B点的坐标.
(2)把k的值代入不等式,讨论当a>0和当a<0时分别求出不等式的解.
(3)讨论当C在第一象限时,△OAC不可能为等边三角形,当C在第三象限时,根据OA=OC,求出点C的坐标,再看AC的值看是否构成等边三角形.
解答:解:(1)把A(m,-2)代入y=
2
x
,得-2=
2
m

解得m=-1,
∴A(-1,-2)代入y=kx,
∴-2=k×(-1),解得,k=2,
∴y=2x,
又由2x=
2
x
,得x=1或x=-1(舍去),
∴B(1,2),
(2)∵k=2,
2
x
≥kx为
2
x
≥2x,
根据图象可得:当x≤-1和0<x≤1时,反比例函数y=
2
x
的图象恒在正比例函数y=2x图象的上方,即
2
x
≥2x.
(3)①当点C在第一象限时,△OAC不可能为等边三角形,
②如图,当C在第三象限时,要使△OAC为等边三角形,则OA=OC,设C(t,
2
t
)(t<0),

∵A(-1,-2)
∴OA=
5

∴t2+
4
t2
=5,则t4-5t2+4=0,
∴t2=1,t=-1,此时C与A重合,舍去,
t2=4,t=-2,∴C(-2,-1),而此时AC=
2
,AC≠AO,
∴不存在符合条件的点C.
点评:本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出点C的坐标,看是否构成等边三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网