题目内容
计算:
(1)(-5)4; (2)-54; (3)(-)3; (4)-; (5)-(-)3.
火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票.
(1)共有多少种不同的车票?
(2)如果共有n(n≥3)个站点,则需要多少种不同的车票.
若|x-1|+|y+2|+|z-3|=0,求(x+1)×(y-2)×(z+3)的值.
观察下列三行数:
-3,9,-27,81,-243,….
-5,7,-29,79,-245,….
-1,3,-9,27,-81,….
(1)第一行数是按什么规律排列的?
(2)第二行、第三行数与第一行数分别有什么关系?
(3)分别取这三行数中的第6个数,计算这三个数的和.
对式子-32+(-2)÷(-)2的运算顺序排序正确的是( )
①乘方;②加法;③除法.
A. ①②③ B. ①③② C. ②③① D. ③①②
如图,数轴的单位长度为1,如果P,Q表示的数互为相反数,那么图中的4个点中,哪一个点表示的数的平方值最大( )
A. P B. R C. Q D. T
13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( )
A. 42 B. 49 C. 76 D. 77
在学习第9章第1节“分式”时,小明和小丽都遇到了“当x取何值时,有意义”
小明的做法是:先化简,要使有意义,必须x﹣2≠0,即x≠2;
小丽的做法是:要使有意义,只须x2﹣4≠0,即x2≠4,所以x1≠﹣2,x2≠2.
如果你与小明和小丽是同一个学习小组,请你发表一下自己的意见.
圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为_____.